Z 0
Native Image, AOT, or JIT

When to use in your Java
Architecture

Luram Archanjo
O

Who am I?

Software Engineer at Zup Innovation
MBA in Java projects

Java and Microservice enthusiastic

Agenda

Goal

Types of Architectures

Ahead of time (AOT) compilation
Native Image

Just in time (JIT) compilation

Questions

Goal

2 Types of Architectures

Centralized Distributed
e Monolithic e Microservices
e DataCentric e EventDriven

e Serverless

P
L M
But Architecture

Xis betterthan Y .

y

Find the balance

of your
Architecture

y

All Architecture
has finite

resources!

y

How to use less
resources using
Java language? -

59
yod

y

Java Module?
Microframeworks?

Quarkus?
Micronaut?

y

z None of them!

First, we need to
find the Root

Causel

The villain of
Java's resources
Is the Reflection .

y

W\

How Spring and Jakarta EE work?

Spring is an amazing technical achievement and does
so many things, but does them at Runtime.

e Reads the byte code of every bean it finds.

e Synthesizes new annotations for each
annotation on each bean method, constructor,
field etc. to support Annotation metadata.

e Builds Reflective Metadata for each bean for
every method, constructor, field etc.

2 The use of Reflection!

Lines of Code

Is it possible to have
the same productivity

but without
Reflection?

Yes, with Ahead
Of Time (AOT)

Compilation

y

Ahead of Time (AOT) Compilation

Ahead-of-time compilation (AOT compilation) is the
act of compiling a higher-level programming
language, or an intermediate representation such as
Java bytecode, into a native machine code so that
the resulting binary file can execute natively.

J
N
b(}
g 54 Google

Dagger 2

S
i
MICRONAUT

W\

What are the results
of using Ahead Of
Time (AOT)

Compilation?

y

W\

OpenJDK 14 on 2019 iMac Pro Xeon 8 Core. Winner in Red.

METRIC MICRONAUT 2.0 M2 QUARKUS 1.3.1 SPRING 2.3 M3
Compile Time 1.48s 1.45s 1.33s
./mvn clean compile
Test Time 4.3s 5.85 7.2s
/mvn test
Start Time Dev Mode 420ms 866ms (1) 920ms
Start Time Production 510ms 655ms 1.04s
java -jar myjar.jar
Time to First Response 960ms 890ms 1.85s
Requests Per Second (2) 79k reg/sec 75k reg/sec 72?77 (3)
Request Per Second
| ity 50k reg/sec 46k reg/sec 77?7 (3)
Memory Consumption After
Load Test (-Xmx128m) (4) 290MB 390MB 480MB
Memory Consumption After 249MB 340MB 430MB

~ Load Test (-Xmx18m) (4)
(1) Verifier Disabled

(2) Measured with: ab -k -c 20 -n 10000 http://localhost:8080/hello/John

(3) Spring WebFlux doesn’t seem to support keep alive?
(4) Measured with: ps x -0 rss,vsz,command | grep java

Source: https://micronaut.io/blog/2020-04-28-performance-comparison-spring-boot-micronaut.html

https://micronaut.io/blog/2020-04-28-performance-comparison-spring-boot-micronaut.html

What about the native
machine code?

2 GraalVM

e Native Image
e Ahead-of-Time Compilation
e For existing Java applications, GraalVM can

provide benefits by running them faster,
providing a faster Just In Time (JIT) Compilation

GraalVM

GraalVM Native Image allows you to ahead-of-time
compile Java code to a standalone executable, called
a native image.

Sulong (LLVM)

Graal Compiler ~

R ,
Java HotSpot VM \used by Quarkus

Source: https://www.graalvm.org/docs/reference-manual/native-image/

https://www.graalvm.org/docs/reference-manual/native-image/

GraalVM - Limitations

Dynamic Class Loading: Deploying jars, wars, etc. at
runtime impossible.

Reflection: Requires registration via native-image
CLI/APL.

Dynamic Proxy: No agents: JMX, JRebel, Byteman,
profilers, tracers, etc.

What are the results
of using Native
Image?

Java Microservice: Memory Footprint ~5x lower

. 31 MB
Helidon
106 MB

. 41 MB
Micronaut
180 MB
17 MB
Quarkus
121 MB

IS T T S T Ty T Ty S T S T T T S T T T [TN I W N S Ty S N T S T S S IO T TN N AN T N S |
I T T T T T U T T T 1

OMB 20MB 40MB 60MB 80MB 100MB 120MB 140 MB 160 MB 180 MB 200 MB
M GraalVM 19.0 Native Image m GraalVM 19.0 HotSpot Mode

|

Source: https://www.graalvm.org/docs/why-graal/

https://www.graalvm.org/docs/why-graal/

Java Microservice: Startup Time ~50x faster

. 35ms
Helidon 988 me

|

= 37 ms
Micronaut
2101 ms

16 ms
Quarkus
940 ms
—_— e —— —————————— bt |
0Oms 500 ms 1000 ms 1500 ms 2000 ms 2500 ms

m GraalVM 19.0 Native Image m GraalVM 19.0 HotSpot Mode

Source: https://www.graalvm.org/docs/why-graal/

https://www.graalvm.org/docs/why-graal/

Early Adopter
Technology!

| don’t use Quarkus,
Micronaut and Helidon!

How can | improve my
current system?

59
yod

y

What about the Just

In Time (JIT)
Compilation?

W\

Just In Time (JIT) Compilation

Just In Time (JIT) compilation is a way of executing
computer code that involves compilation during
execution of a program. It runs complex
optimizations to generate high-quality machine code

System.out.prin) 6a 6176 61 20) 01101010
tin("Hello c3 a9 20 66 o6f 01100001

World"); 64 61 0100000

Machine code

O

What are the results

of using Just In Time
(JIT) Compilation?

Twitter u

Every company is constantly looking into ways to
increase availability of the platform while keeping an
eye on costs. Twitter saw Oracle GraalVM, a
language-independent compiler engine and virtual
machine, and decided to try it. Average CPU savings
for compiler innovation are in the 1-2 percent range,
but using Oracle GraalVM, Twitter realized between
8 and 11 percent CPU savings, depending on the
microservice ported.

W\

O

Source: https://www.constellationr.com/research/how-oracle-graalvm-supercharged-twitter-s-microservices-platform

https://www.constellationr.com/research/how-oracle-graalvm-supercharged-twitter-s-microservices-platform

3 What are the results of using Just
In Time (JIT) Compilation?

OpenJDK GraalVM.

Count 4589 Count 5815
Total 60.00 s Total 60.00 s
Slowest 3.79s) Slowest 2365
Fastest 5.85ms Fastest 2.15ms
Average 130.43 ms Average 102.87 ms
Requests /sec 76.48 Requests /sec 96.91

A lot of cool
initiatives!

Let us recap?

y

Summary

2° Place

Native Image

e Lowmemory
footprint 5x lower

e Fast Startup 50x
lower

e Early Adopter
Technology

Ahead of Time (AOT)
Compilation

e Lowmemory
footprint

e FastStartup

e [0C&SQL

3° Place

Justin Time (JIT)
Compilation

° Latency

e Throughput

Native Image, AOT, or
JIT?

When to use in your

Java Architecture?

y

W\

O

Native Image, AQT, or JIT? When to
use in your Java Architecture?

New Application

Ahead Of Time Serverless & CLI
Compilation
JustIn Time
Compilation e Spring* Native Image
e GraalVM e Quarkus e GraalVM
o Java8
o Javall e Micronaut G
e Community e Helidon

e Enterprise

https://spring.io/blog/2020/04/09/spring-graalvm-native-0-6-0-released

4

Java is dying?

y

Thanks a million!
Questions?

= /larchanjo

In /luram-archanjo

y

