How to test the Swift in my Ul

Paulo Santos e Vitor Varela

THE
DEVELOPER’S
CONFERENCE

&

The Goal

OEVELOPERS ThoughtWorks:

CONFERENCE

Introduction Robot Pattern View Inspector Snapshot Tests

ThoughtWorks

CONFERENCE

Introduction

ThoughtWorks

CONFERENCE

Google

Pesquisa Google Estou com sorte

Disponibilizado pelo Geoogle em: English

(=

Gmail

Imagens

Build great apps in SwiftUI

N

54:38

Introduction to SwiftUl
WWDC 2020

App essentials in SwiftUIl
WWDC 2020

27:44
What's new in SwiftUI
WWDC 2020
B
5:06

Visually edit SwiftUl views
WWDC 2020

14:14
Build a SwiftUl view in Swift
Playgrounds
WWDC 2020

20:22

Build SwiftUI views for widgets
WWDC 2020

12:02

Build document-based apps in
SwiftUl

WWDC 2020

\
2\
<
8
>
-
o
(=]
=

'!HI.IH 3.(&

Build complications in SwiftUI
WWDC 2020

!
3
L

19:08

Stacks, Grids, and Outlines in
SwiftUl

WWDC 2020

N
N

36:15

Data Essentials in SwiftUI
WWDC 2020

THE
DEVELOPER’S
CONFERENCE

Unit testing in SwiftUl

Asked 10 months ago Active 7 months ago Viewed 1k times

| am trying to write unit tests for SwiftUl views but finding zero resources on the web for how to go
about that.

3

| have a view like the following

struct Page: View {
@EnvironmentObject var service: Service

var body: some View {
NavigationView {
ScrollView(.vertical) {
VStack {
Text("Some text"))
.font(.body)
.navigationBarTitle(Text("Title")))

Spacer(minLength: 100)

“

| started writing a test like this

func testPage() {
let page = Page().environmentObject(Service())
let body = page.body
XCTAssertNotNil(body, "Did not find body")

But then how do | get the views inside the body? How do | test their properties? Any help is
appreciated.

Update: As a matter of fact even this doesn't work. | am getting the following runtime exception

Thread 1: Fatal error: body() should not be called on ModifiedContent<Page,_Enviroi

‘houghtWorks:

3 Original reply:
Until Apple
a) designs testability into SwiftUl, and
b) exposes this testability to us,

we're screwed, and will have to use Ul Testing in place of unit testing... in a complete inversion of
the Testing Pyramid.

share improve this answer follow edited Dec 2 '19 at 0:29 answered Oct 4 '19 at 19:57

:1, Jon Reid
'2 179k #2 51 @82

ThoughtWorks

CONFERENCE

THE
DEVELOPER’S
CONFERENCE

3

v/

There is a framework created specifically for the purpose of runtime inspection and unit testing of
SwiftUl views: Viewlnspector

So the test for your view would look like this:

func testPage() throws {
let page = Page().environmentObject(Service())
let string = try page.inspect().navigationView().scrollView()
.vStack().text(9).string()
XCTAssertEqual(string, "Some text")

}

share improve this answer follow edited Jan 12 at 11:54 answered Nov 24 '19 at 18:50

Qg nalexn
: 8,833 @6 @37 @45

Update: Let's all try using the Viewlnspector library by nalexn!
Original reply:

Until Apple

a) designs testability into SwiftUl, and

b) exposes this testability to us,

we're screwed, and will have to use Ul Testing in place of unit testing... in a complete inversion of
the Testing Pyramid.

share improve this answer follow edited Dec 2 '19 at 0:29 answered Oct 4 '19 at 19:57

Jon Reid
"2 179k =2 o 51 82

1ghtWorks:

Introduction Robot Pattern View Inspector Snapshot Tests

ThoughtWorks

CONFERENCE

Robot Pattern

ThoughtWorks

CONFERENCE

onon

Ul Testing

OEVELOPERS ThoughtWorks:

CONFERENCE

func test_sendNewiMessage() { XCUITest

let app = XCUIApplication()
app. launch()

app.buttons[“new_message”].tap()

let newMessage = app.staticTexts[“New Message”]

let predicate = NSPredicate(format: “exists == true”)

let expectation = XCTNSPredicateExpectation(predicate: predicate, object: newMessage)
let result = XCTWaiter.wait(for: [expectation], timeout: 5)

XCTAssertEqual(result, .completed)

app.typeText(“iMessage Contact”)

let newimessage = app.staticTexts[“New iMessage”]

let newimessagePredicate = NSPredicate(format: “exists == true”)

let newiMessageExpectation = XCTNSPredicateExpectation(predicate: newimessagePredicate, object: newimessage
let newiMessageResult = XCTWaiter.wait(for: 'newiMessageExpectation], timeout: 5)
XCTAssertEqual(newiMessageResult, .completed)

let firstField = app.textFields|[“messageField”]

let result = XCTWaiter.wait(for: [expectation], timeout: 5)
XCTAssertEqual(result, .completed)

app.typeText(“iMessage Contact”)

let newimessage = app.staticTexts[“New iMessage”]

let newimessagePredicate = NSPredicate(format: “exists == true”)

let newiMessageExpectation = XCTNSPredicateExpectation(predicate: newimessagePredicate, object: newimessage
let newiMessageResult = XCTWaiter.wait(for: 'newiMessageExpectation]/, timeout: 5)
XCTAssertEqual(newiMessageResult, .completed)

let firstField = app.textFields|[“messageField”]

firstField.typeText(“test iMessage”)
app.buttons[“send”].tap()

let message = app.staticTexts[“test iMessage”]

let messagePredicate = NSPredicate(format: “exists == true”)

let messageExpectation = XCTNSPredicateExpectation(predicate: messagePredicate, object: message)
let messageResult = XCTWaiter.wait(for: [messageExpectation], timeout: 5)
XCTAssertEqual(messageResult, .completed)

'd o

import XCTest
class Robot {
var app = XCUIApplication()

func tap(_ element: XCUIElement, timeout: TimeInterval = 5) {

let expectation = XCTNSPredicateExpectation(predicate: NSPredicate(format: “isHittable == true”), object: element)
guard XCTwWaiter.wait(for: [expectation], timeout: timeout) == .completed else {
XCTAssert(false, “Element \(element.label) not hittable”)
}
}
func assertExists(_ elements: XCUIElement.., timeout: TimeInterval = 5) {
let expectation = XCTNSPredicateExpectation(predicate: NSPredicate(format: “exists == true”), object: elements)
guard XCTwWaiter.wait(for: [expectation], timeout: timeout) == .completed else {

XCTAssert(false, “Element does not exist”)

Swift

class ConversationDetailRobot: Robot {

private var messageType = “Message”

lazy private var
lazy private var
lazy private var
lazy private var
lazy private var

screenTitle = app.staticTexts|[“New \(messageType)”]
contactField = app.textFields|[“contact”]

cancel = app.buttons|[“Cancel”]

messageField = app-textFields |[“messageField”]
sendButton = app.buttons[“send”]

@discardableResult
func checkScreen(messageType: String) —> Self {
self.messageType = messageTlype

assertExists(screenTitle, contactField, cancel, message Field,
return self
b
@discardableResult
func enterContact(contact: String) —> Self {
tap(contactField)
contactField. typeText(contact)
return self
b
@discardableResult

func enterMessage(message: String) —> Self {
tap(messageField)

messageField.

return self

typeText (message)

sendButton)

@discardableResult

func enterContact(contact: String) —> Self {
tap(contactField)
contactField. typeText(contact)
return self

b

@discardableResult

func enterMessage(message: String) —> Self {
tap(messageField)
messageField. typeText(message)
return self

b

@discardableResult

func sendMessage() —> Self {
tap(sendButton)
return self

b

@discardableResult

func checkConversationContains(message: String) —> Self {
let messageBubble = app.staticTexts [message]
assertExists(messageBubble)
return self

Swift

Robot Pattern

func test_sendNewiMessage() {
let message = “test message”
XCUIApplication().launch()

ConversationListRobot()
.newConversation()
.checkConversationContains(message: “Message”)
.enterContact(contact: “iMessage Contact”)
.checkScreen(messageType: “iMessage”)
.enterMessage(message: message)

. sendMessage()
. checkConversationContains (message: message)

/ }
&Y/ CONFERENCE

)
il IU“SI ILVVUI I\NO

Introduction Robot Pattern View Inspector Snapshot Tests

ThoughtWorks

CONFERENCE

View lInspector

ThoughtWorks

CONFERENCE

View Inspector

Apple Support SwiftUl Views

ThoughtWorks

CONFERENCE

Alexey Naumov
nalexn

Designing software the ruthless way
Follow) Sponsor
A 164 followers - 0 following - Y¥ 122

® Moscow
& https://nalexn.github.io/
W @nallexn

1 1c

#» DEVELOPER'S
CONFERENCE

« https://nalexn.github.io/swiftui-unit-testing/

ThoughtWorks:

https://nalexn.github.io/swiftui-unit-testing/

Features

1. Verify the view's inner state

You can dig into the hierarchy and read the actual state values on any SwiftUl View:

func testVStackOfTexts() throws {
let view = VStack {
Text("1")
Text("2")
Text("3")
¥
let text = try view.inspect().vStack().text(2).string()
XCTAssertEqual(text, "3")

DEVELOPERS ThoughtWorks:

CONFERENCE

Features

2. Trigger side effects

You can simulate user interaction by programmatically triggering system-controls callbacks:

let button = try view.inspect().hStack().button(1)
try button.tap()

let list = try view.inspect().list()
try list[5].view(RowItemView.self).callOnAppear()

ThoughtWorks

CONFERENCE

Features

3. Extract custom views from the hierarchy of any depth

It is possible to obtain a copy of your custom view with actual state and references from the hierarchy of any depth:

let sut = try view.inspect().tabView().navigationView()
.overlay().anyView().view(CustomView.self).actualView()
XCTAssertTrue(sut.viewModel. isUserLoggedIn)

ThoughtWorks

CONFERENCE

Features

e Views using @Binding
e Views using @ObservedObject
e Views using @State, @Environment or @EnvironmentObject

e ViewModifiers

OEVELOPERS ThoughtWorks:

CONFERENCE

import XCTest Exa m p | e

import ViewlInspector
import SwiftUI
@testable import PocViewInspector

class PocViewInspectorTests: XCTestCase A

import XCTest Exa m p | e

import ViewInspector
import SwiftUI
@testable import PocViewInspector

class PocViewInspectorTests: XCTestCase <

func testContentView withText_shouldHaveHelloWorld() throws {
let sut = ContentView()
let text = try sut.body.inspect().vStack().text(@).string()
XCTAssertEqual(text, "Hello, World!")

import XCTest Exa m p | e

import ViewInspector
import SwiftUI
@testable import PocViewInspector

class PocViewInspectorTests: XCTestCase {

func testContentView withText_shouldHaveHelloWorld() throws {

let sut = ContentView()
let text = try sut.body.inspect().vStack().text(@).string()

XCTAssertEqual(text, "Hello, World!")

func testContentView_withList_firstElementShouldBeHello@() throws {
let sut = ContentView()
let list = try sut.body.inspect().vStack().list(1)
let firstText = try list.forEach(@).hStack(@).text(@).string()
let secondText = try list.forEach(@).hStack(1l).text(@).string()

XCTAssertEqual(firstText, "Hello 0")
XCTAssertEqual(secondText, "Hello 1")

et sut = ContentvViewl)
let text = try sut.body.inspect().vStack().text(@).string()

XCTAssertEqual(text, "Hello, World!")

func testContentView_withList_firstElementShouldBeHello@() throws {

let sut = ContentView()

let list = try sut.body.inspect().vStack().list(1)

let firstText = try list.forEach(@).hStack(0).text(@).string()
let secondText = try list.forEach(@).hStack(1l).text(@).string()

XCTAssertEqual(firstText, "Hello 0")
XCTAssertEqual(secondText, "Hello 1")

func testContentView _withCustomView_shouldHaveTextWithCustomText() throws <{
let sut = ContentView()

let customView = try sut.body.inspect().vStack().view(CustomView.self, 2).actualView()
let text = try customView.body.inspect().text().string()
XCTAssertEqual(text, "Custom text")

}
extension CustomView: Inspectable {}
Swift v

Introduction Robot Pattern View Inspector Snapshot Tests

ThoughtWorks

CONFERENCE

Snapshot Tests

OEVELOPERS ThoughtWorks:

CONFERENCE

Shapshot Testing

Regression

o Ul Changes Snapshot types

ThoughtWorks

CONFERENCE

Features

* Dozens of snapshot strategies. Snapshot testing isn't just for UIView s and CALayer s. Write snapshots
against any value.

DEVELOPER'S I houghtWorks:

CONFERENCE

Features

* Dozens of snapshot strategies. Snapshot testing isn't just for UIView s and CALayer s. Write snapshots
against any value.

* Write your own snapshot strategies. If you can convert it to an image, string, data, or your own diffable
format, you can snapshot test it! Build your own snapshot strategies from scratch or transform existing ones.

DEVELOPER'S I houghtWorks:

CONFERENCE

Features

* Dozens of snapshot strategies. Snapshot testing isn't just for UIView s and CALayer s. Write snapshots
against any value.

* Write your own snapshot strategies. If you can convert it to an image, string, data, or your own diffable
format, you can snapshot test it! Build your own snapshot strategies from scratch or transform existing ones.

* No configuration required. Don't fuss with scheme settings and environment variables. Snapshots are
automatically saved alongside your tests.

DEVELOPER'S I houghtWorks:

CONFERENCE

Features

Dozens of snapshot strategies. Snapshot testing isn't just for UIView s and CALayer s. Write snapshots
against any value.

Write your own snapshot strategies. If you can convert it to an image, string, data, or your own diffable
format, you can snapshot test it! Build your own snapshot strategies from scratch or transform existing ones.

No configuration required. Don't fuss with scheme settings and environment variables. Snapshots are
automatically saved alongside your tests.

More hands-off. New snapshots are recorded whether isRecording modeis true or not.

DEVELOPER'S I houghtWorks:

CONFERENCE

Features

Dozens of snapshot strategies. Snapshot testing isn't just for UIView s and CALayer s. Write snapshots
against any value.

Write your own snapshot strategies. If you can convert it to an image, string, data, or your own diffable
format, you can snapshot test it! Build your own snapshot strategies from scratch or transform existing ones.

No configuration required. Don't fuss with scheme settings and environment variables. Snapshots are
automatically saved alongside your tests.

More hands-off. New snapshots are recorded whether isRecording modeis true or not.

Subclass-free. Assert from any XCTest case or Quick spec.

| houghtWorks:

Features

Dozens of snapshot strategies. Snapshot testing isn't just for UIView s and CALayer s. Write snapshots
against any value.

Write your own snapshot strategies. If you can convert it to an image, string, data, or your own diffable
format, you can snapshot test it! Build your own snapshot strategies from scratch or transform existing ones.

No configuration required. Don't fuss with scheme settings and environment variables. Snapshots are
automatically saved alongside your tests.

More hands-off. New snapshots are recorded whether isRecording modeis true or not.
Subclass-free. Assert from any XCTest case or Quick spec.

Device-agnostic snapshots. Render views and view controllers for specific devices and trait collections from a
single simulator.

| houghtWorks:

Features

Dozens of snapshot strategies. Snapshot testing isn't just for UIView s and CALayer s. Write snapshots
against any value.

Write your own snapshot strategies. If you can convert it to an image, string, data, or your own diffable
format, you can snapshot test it! Build your own snapshot strategies from scratch or transform existing ones.

No configuration required. Don't fuss with scheme settings and environment variables. Snapshots are
automatically saved alongside your tests.

More hands-off. New snapshots are recorded whether isRecording modeis true or not.
Subclass-free. Assert from any XCTest case or Quick spec.

Device-agnostic snapshots. Render views and view controllers for specific devices and trait collections from a
single simulator.

First-class Xcode support. Image differences are captured as XCTest attachments. Text differences are
rendered in inline error messages.

| houghtWorks:

Features

Dozens of snapshot strategies. Snapshot testing isn't just for UIView s and CALayer s. Write snapshots
against any value.

Write your own snapshot strategies. If you can convert it to an image, string, data, or your own diffable
format, you can snapshot test it! Build your own snapshot strategies from scratch or transform existing ones.

No configuration required. Don't fuss with scheme settings and environment variables. Snapshots are
automatically saved alongside your tests.

More hands-off. New snapshots are recorded whether isRecording modeis true or not.
Subclass-free. Assert from any XCTest case or Quick spec.

Device-agnostic snapshots. Render views and view controllers for specific devices and trait collections from a
single simulator.

First-class Xcode support. Image differences are captured as XCTest attachments. Text differences are
rendered in inline error messages.

Supports any platform that supports Swift. Write snapshot tests for iOS, Linux, macOS, and tvOS.

| houghtWorks:

Features

Dozens of snapshot strategies. Snapshot testing isn't just for UIView s and CALayer s. Write snapshots
against any value.

Write your own snapshot strategies. If you can convert it to an image, string, data, or your own diffable
format, you can snapshot test it! Build your own snapshot strategies from scratch or transform existing ones.

No configuration required. Don't fuss with scheme settings and environment variables. Snapshots are
automatically saved alongside your tests.

More hands-off. New snapshots are recorded whether isRecording modeis true or not.
Subclass-free. Assert from any XCTest case or Quick spec.

Device-agnostic snapshots. Render views and view controllers for specific devices and trait collections from a
single simulator.

First-class Xcode support. Image differences are captured as XCTest attachments. Text differences are
rendered in inline error messages.

Supports any platform that supports Swift. Write snapshot tests for iOS, Linux, macOS, and tvOS.

SceneKit, SpriteKit, and WebKit support. Most snapshot testing libraries don't support these view
subclasses.

| houghtWorks:

Features

Dozens of snapshot strategies. Snapshot testing isn't just for UIView s and CALayer s. Write snapshots
against any value.

Write your own snapshot strategies. If you can convert it to an image, string, data, or your own diffable
format, you can snapshot test it! Build your own snapshot strategies from scratch or transform existing ones.

No configuration required. Don't fuss with scheme settings and environment variables. Snapshots are
automatically saved alongside your tests.

More hands-off. New snapshots are recorded whether isRecording modeis true or not.
Subclass-free. Assert from any XCTest case or Quick spec.

Device-agnostic snapshots. Render views and view controllers for specific devices and trait collections from a
single simulator.

First-class Xcode support. Image differences are captured as XCTest attachments. Text differences are
rendered in inline error messages.

Supports any platform that supports Swift. Write snapshot tests for iOS, Linux, macOS, and tvOS.

SceneKit, SpriteKit, and WebKit support. Most snapshot testing libraries don't support these view
subclasses.

Codable support. Snapshot encodable data structures into their JSON and property list representations.

| houghtWorks:

Features

Dozens of snapshot strategies. Snapshot testing isn't just for UIView s and CALayer s. Write snapshots
against any value.

Write your own snapshot strategies. If you can convert it to an image, string, data, or your own diffable
format, you can snapshot test it! Build your own snapshot strategies from scratch or transform existing ones.

No configuration required. Don't fuss with scheme settings and environment variables. Snapshots are
automatically saved alongside your tests.

More hands-off. New snapshots are recorded whether isRecording modeis true or not.
Subclass-free. Assert from any XCTest case or Quick spec.

Device-agnostic snapshots. Render views and view controllers for specific devices and trait collections from a
single simulator.

First-class Xcode support. Image differences are captured as XCTest attachments. Text differences are
rendered in inline error messages.

Supports any platform that supports Swift. Write snapshot tests for iOS, Linux, macOS, and tvOS.

SceneKit, SpriteKit, and WebKit support. Most snapshot testing libraries don't support these view
subclasses.

Codable support. Snapshot encodable data structures into their JSON and property list representations.

e Custom diff tool integration.

| houghtWorks:

import SnapshotTesting
import XCTest

class MyViewControllerTests: XCTestCase {
func testMyViewController() {

let contentView = SwiftUIView()

let hostController = UIHostingController(rootView: contentView)
assertSnapshot(matching: hostController, as: .image(on: .iPhoneSe
assertSnapshot(matching: hostController, as: .image(on: .iPhoneSe
assertSnapshot(matching: hostController, as: .image(on: .iPhoneX)
assertSnapshot(matching: hostController, as: .image(on: .iPadMini

)
. landscape)))

)
(
)
(

.portrait)))

Swift

DEVELOPER'S ThoughtWorks:

=% CONFERENCE

/ﬁ‘ txaiwieser commented on 3 Jul

Also facing a lot of problems trying to snapshot SwiftUl views

DEVELOPERS ThoughtWorks:

CONFERENCE

V4
/
a—
—_—

ThoughtWorks

CONFERENCE

Robot Pattern - Pros

Clear tests

Accessibility
ThoughtWorks

CONFERENCE

Visual specs

Robot Pattern
- Cons

Production code

DEVELOPER'S ThoughtWorkS®

CONFERENCE

View Inspector - Pros

Full support to unit test Fast and easy to mock
SwiftUl views and modifiers

ThoughtWorks:

w==?" CONFERENCE

View |nspector - Cons

Hard to find element to New SwiftUl view types Library is maintained by
test in view hierarchy may not be supported the community

ThoughtWorks

CONFERENCE

Almost no efforts to update
broken tests

Shapshot -

Pros

Obviously what has changed

THE

& S5ones ThoughtWorks:

w==?" CONFERENCE

7 N\
\

Snapshot cons

BUGS SIZE FALSE NEGATIVES COUPLING

