dWSs

\-/‘7

Arquiteturas Resilientes na Nuvem

Trilha Arquitetura @

Luiz Yanai, Solutions Architect - AWS <>

Leonardo Piedade, Solutions Architect - AWS

N%

A

[

Agenda

« What are we planning for?

« Think resiliently. Principles of Resiliency
« System Architecture Blueprints

« Lessons Learned

dWs$s

“Everything fails, all the
time”

- Werner Vogels
(CTO, Amazon.com)

ed the Tyring tes:

Guido van Nispen/license

Resiliency is the ability for a system to
recover quickly and continue
operating even when a failure occurs

© 2021, Amazon Web Services, Inc. or its Affiliates.

dWsS

What are we planning for?62

© 2021, Amazon Web Services, Inc. or its Affiliates.

<>

Bad Things Happen

) .‘\\,‘5 a\
R LA

dWsS

© 2021, Amazon Web Services, Inc. or its Affiliates.
Source: https://www.datacenterdynamics.com/en/news/fire-destroys-ovhclouds-sbg2-data-center-strasbourg/ v‘)

https://www.datacenterdynamics.com/en/news/fire-destroys-ovhclouds-sbg2-data-center-strasbourg/

© 202 . .
2 u
9] f
1 \ V e-inten
Ity/

\/‘7

https://www.forbes.com/sites/lealane/2020/04/04/are-you-ready-for-this-2020-hurricane-forecast-above-average-intensity/

Think Resiliently @
Principles of Resiliency

Q e
N

Recovery Point and Recovery Time Objective

: Disaster ,
Recovery point Recovery time

Time o ®

Data loss Down time

dWsS

Resilient AWS Cloud

Infrastructure

* Regions, AZs
Service Design
« Distributed systems best

practices

Understand the AWS Services scope

* Single AZ, Regional, Global,

Cross-Regional capability

AWS Region

Avallab|l|ty zone 1
Data center

Avallablllty zone 3

l!

Data center

Self-Healing applications

Highly resilient applications must be able to self-
heal.

How

* Leverage Microservices app
architecture

 Decouple Inter-

dependencies, loose
coupling

 Remove state from app
components

|5 AWs Cloud

AWS Region A

"=4 AWS Cloud

13 AWS Cloud

Resilient Data

Must have confidence in the resilience of your data

Many forms:

Consider how eventual consistency impacts design

filesystem,

block storage,
databases

in memory caches

D_

Instance MySQL DB
Instance

ﬁ@

RDS DB Instance

Read Replica

US East (Northern Virginia) Region

E

Instance RDS DB Instance

Read Replica
EU (Ireland) Region

Instance RDS DB Instance '

Read Replica
Asia Pacific (Tokyo) Region

dWs$s

_/‘7

iS STUCK iN
tHe tree!

fHINK YoU
CAN CLiMB ALL
fHe wWAY up

KiTTY! THANKS
INVINCIBLE!

It's Just A Bit
out of SYNC.
CHeck AGAIN.

wew, I'u ge!
YoU're RiGHt!

System Architecture @
Blueprints

Q e
N

Single AZ

If cost is an important requirement and availability is not a
concern

Pros

« Simplicity in design, implementation, and
operations.

« Some services offer self-healing features

e |tis difficult to achieve this scenario since most
services offers AZ resilience by default

Cons

« Slow recovery
« Higher RPO, RTO

Examples: Some MVP's, prototypes, internal applications

Primary DB

(Read / Write)

Multi AZ

Start here before adopting more complex architecture
Only consider multi-region if requirements dictate

Pros

Cons

Availability of AWS region-wide services
include Amazon S3, Amazon DynamoDB,
Amazon EFS, Amazon SQS, Amazon Kinesis

Much less complexity in design,
implementation, and operations.

If you need >99.9% availability, consider
multi-region.

May not meet needs of regulators

Primary DB
(Read / Write)

Multi-Region: Active-Standby

Traditional DR Pattern
Backup region used in event of failure only

Pros

 For Apps which cannot use native AWS
features

« Least # changes to the application
Cons
« RPO limited by replication lag
« RTO, delays while Standby becomes Active

Multi-Region: Active-active

Both stacks active, traffic distributed

Data replication critical, must consider latency
impacts

Pros
e ZeroRTO

 Works well for apps that can
partition users

Cons

« Data replication must be handled by | :
Applications = " | wiite Data

Multi-Region: Dual-write

Shared nothing architecture
Good for legacy applications

Pros

« Zero RPO

« Zero RTO

« Little/No change to apps in each region
Cons

« Requires checkpointing

« Reconciliation jobs to ensure sites in sync

Checkpoint / Reconciliation

dWs$s

Serverless

Region 1 - Active

Frontend

Amazon Simple

Application Backend & Data

&

Amazon AP| Gateway AWS Lambda Amazon DynamoDB

i

! Storage Service (S3) 1€ 1 B
R 1 L
é)&% grOSgs . Continuous Deployment | Global
egion ! : ; ' Tables
Replication | Multi Region :
Amazon Route 53 Amazon CloudFront TTTT]' """""" '| """"
2 - Active l l
"""" AL e e |
Frontend Application Backend & Data
P
A4

) » »

Amazon AP| Gateway AWS Lambda Amazon DynamoDB

Amazon Simple

aws \ Storage Service (S3)
\./‘7

Containers

dWS

\/‘7

Region 1 - Active

Amazon Route 53

Amazon CloudFront

[mmmmommmmmmemee e S atrt =t auuuia ittt '
. Frontend ; Data Plane :
] 1 ' :
: : : 1 ! N—
] ' '
'] ' : —>
| : : '
i Amazon Simple ! ' Load Balancer Worker Nodes | Primary DB
> | Storage Service (S3) <] 3 :
bmmmmmmm g mm - ' - 1
E Control Plane
' ﬁ I
1 '
1 '
: 1
. AWS Elastic :
. Kubernetes Service X
oo T T T J'"""""".
grOS_S » Continuous Deployment | Global
egion ' : : ! Database
Replication Multi Reglon i
____________ R

Region

2 - Active

Frontend

Amazon Simple
Storage Service (S3)

Control Plane

D

AWS Elastic

Kubernetes Service

&

Load Balancer

R N

Data Plane
WriteiData v
| . .‘ \
Worker Nodes : Secondary DB
' Read-only

Anti-Patterns

* Replicate existing problems & patterns to the cloud
« Use of Non-redundant architectures to meet schedules
* Single datacenter (Availability Zones) architectures
* Reusing manual processes
 Data retention practices, Failover & Scaling
* Responding to monitoring alerts and metrics (vs self-healing, auto scaling)
« Assuming data is safe in your data center

Don't sacrifice long-term value
for short-term results

dWsS

Continuous Testing of Infrastructure

Regularly execute tests in stable, production & production-like test environments.
« Load Testing

Treat Infrastructure as Code

« CI/CD Test in Infrastructure Build Pipeline

« Testing of infrastructure during Integration Test
« Zero Touch

Monitoring

Chaos Engineering
* “Breaking things to make them better”

dWs$s

Chaos engineering

Cloud has ushered in new method of testing

Principles of Chaos Engineering — “Chaos Engineering can be thought of as the facilitation of
experiments to uncover systemic weaknesses.” https://principlesofchaos.org/

Principles
« Building a hypothesis around steady state behavior
« Applying variations to simulate real world events
* Run experiments in production
« Automate the experiments to run continuously
* Minimize blast radius of failures

dWs$s

V"

https://principlesofchaos.org/

Cascading failures
Backpressure and Exponential Backoff
Timeouts and Circuit Breaker

Shared nothing and Cell-Architecture
Partitions and Bulkheads

Self provisioning and Fast replacement
Fitness Functions & SLA's

Crisis Response and Post mortem
Automatic Responses

Quarantine & Debugging

Some books...

Release It!
Second Edition

Design and Deploy
Production-Ready Software

e
;QQ"Q |

Michael T. Nygard
Edited by Katharine Dvorak

O'REILLY

Building Secure &
Reliable Systems

Best Practices for Designing, Implementing
and Maintaining Systems

Heather Adkins, Betsy Beyer,
Paul Blankinship, Piotr Lewandowski,

Ana Oprea & Adam Stubblefield

OREILLY"

Slt

Rehabﬂity
Engineering

HOW GOOGLE RUNS PRODUCTION SYSTEMS

Edited by Betsy Beyer, Chris Jones,
Jennifer Petoff & Niall Richard Murphy

dWs$s

dWSs

Thank You!

Luiz Yanai, Solutions Architect - AWS
Leonardo Piedade, Solutions Architect - AWS

/7

S

/

